CHROM. 23 854

Quantitative separation of Cr^{3+} from Mo^{6+} , W^{6+} , Hg_2^{2+} , Cu^{2+} and Pb^{2+}

Chromatographic behaviour of 51 cations on papers impregnated with Sn(IV)-based inorganic ion exchangers in complex-forming acid systems

Surendra Dutt Sharma* and Smiti Misra

Analytical Research Laboratory, Department of Chemistry, Hindu College, B-3, Jigar Colony, Moradabad-244001 (India)

(First received July 19th, 1991; revised manuscript received November 6th, 1991)

ABSTRACT

The chromatographic behaviour of 51 metal ions was studied on tin(IV) arsenate-, tin(IV) phosphate-, tin(IV) tungstate-, tin(IV) molybdate- and tin(IV) selenite-impregnated papers in 0.5 M oxalic, citric and tartaric acid media. The composition and ion-exchange capacity of these papers were determined. The concentration of the anion in the exchanger deposited was found to vary directly with the pK_a of the corresponding anionic acids. The selectivity of the papers for different cations is discussed. The mechanism of migration is explained in terms of ion exchange, precipitation and adsorption. A published view on the prediction of elution sequence from R_F values was also checked. A number of binary and ternary separations were achieved. Cr^{3+} was quantitatively separated from binary mixtures and from synthetic mixtures containing common interfering metals.

INTRODUCTION

Chromatography of metal ions on papers impregnated with tin(IV)-based inorganic ion exchangers offers interesting separation possibilities [1-10]. These papers are highly selective and give rapid separations with simple aqueous systems. Recently, ion-exchange chromatographic separations of some anions on hydrated tin(IV) oxide-impregnated papers were also reported [11]. However, the methods of preparation of these papers by different workers during the last two decades have not always been the same and the chemical composition of the material loaded on the strips was not determined. It is important that the various ion-exchange papers should be prepared again under similar experimental conditions, their compositions determined and their selectivities for metal ions studied.

Another limitation in the earlier studies was the selection of solvents. In most instances, the noncomplexing substance was used as a developer. To enhance the separation potential of these papers, it is therefore desirable to combine complexation with ion exchange. In this paper we show that the combination of these processes leads to excellent separation possibilities.

The exchangers based on tin(IV) were used to impregnate the papers owing to their high chemical stability and good ion-exchange capacity [12–16]. As these exchangers show high selectivity at low pH and decompose at high pH, weak acids were chosen as solvents so as to prevent the hydrolysis of the exchange materials. The complexing acids chosen were oxalic, citric and tartaric acid. As as result, some analytically important separations were achieved, *e.g.*, Cr^{3+} was quantitatively separated from Mo⁶⁺, W⁶⁺ and other metal ions.

EXPERIMENTAL

Apparatus

Chromatography was performed on 15×3.5 cm Whatman No.1 paper strips in 20×5 cm glass jars. A Bausch and Lomb Spectronic-20 instrument was used for colorimetry.

Reagents

Tin(IV) chloride pentahydrate was used. All other chemicals and solvents used were of analyticalreagent grade from BDH.

Preparation of ion-exchange papers

Papers impregnated with tin(IV)-based inorganic ion exchangers were prepared in the same manner as the tin(IV) arsenate-impregnated papers reported previously [6].

Test solutions and detectors

The test solutions were generally 0.1 M in the metal nitrate or chloride and were prepared as described previously [5]. Conventional spot test reagents were used for detection purposes.

Procedure

Chromatography. Chromatography was performed as described previously [5].

Composition of paper. Impregnated paper strips for each exchanger were separately dissolved in

 $HC1O_4$ -HNO₃-H₂SO₄ (3:1:4) and the solution was evaporated to dryness. The residue was dissolved in 4 *M* hydrochloric acid and the solution was diluted to 50 ml in each instance. The tin and the anion present were determined by methods reported previously [12–16].

Quantitative work. A $5 \cdot 10^4 \, \mu \text{g/ml}$ stock solution of chromium chloride was prepared, then diluted 200-fold. A 20- μ l volume of the solution containing 5 μ g of Cr³⁺ was then applied on to tin(IV) phosphate papers with the help of a lambda pipette. The other cations to be separated were also applied in the amounts shown in Table V. The strips were dried in air and saturated for 10 min with the developer and were then developed in 0.5 M oxalic acid until the solvent had ascended 11 cm. A pilot paper for each separation was run simultaneously in order to locate the exact position of the Cr^{3+} spot with the help of a colour agent. The area on the working strip was cut into small pieces and chromium was eluted with 0.25 M H₂SO₄ at room temperature. The volume of solution was reduced by heating on a hot-plate. The paper pulp was oxidized with $HNO_3-HClO_4-H_2SO_4$ (1:3:2). The solution was then evaporated to 10 ml, cooled and 0.5 ml of 0.1 M KMnO₄ was added to oxidize [17] Cr³⁺ to Cr⁶⁺. Five drops of 5% sodium azide solution were added to decolorize the brownish tint. The solution was transfered to a 25-ml volumetric flask and 1 ml of diphenyl carbazide solution was added followed by 2 ml of NaH_2PO_4 solution. The blank was run in a similar way by following the entire procedure for an unspotted paper strip. The absorbance of this colour was measured at 540 nm and the amount of Cr^{3+} was obtained from a calibration graph [18].

TABLE I

COMPOSITION AND ION-EXCHANGE CAPACITY OF TIN(IV)-BASED ION-EXCHANGE PAPERS

Paper impregnated with	Concentration of reagents (M)		Anion:Sn	Ion-exchange	
with	Tin(IV) chloride pentahydrate	Sodium salt of anion	- ratio	capacity of impregnated papers (mequiv./g)	
Tin(IV) arsenate	0.10	0.25	2.15:1	0.38	
Tin(IV) molybdate	0.10	0.25	2.75:1	0.40	
Tin(IV) phosphate	0.10	0.10	1.44:1	0.34	
Tin(IV) tungstate	0.10	0.20	4.8:1	0.30	
Tin(IV) selenite	0.10	0.20	2.2:1	0.32	

TABLE II

R_F VALUES OF CATIONS ON TIN(IV)-BASED ION-EXCHANGE PAPERS IN COMPLEX-FORMING ACID SYSTEMS

Cation	$\begin{array}{c} \text{Tin}(\text{IV}) \text{ arsenate} \\ \text{S}_1 \qquad \text{S}_2 \qquad \text{S}_3 \end{array}$	$\begin{array}{c} \text{Tin}(\text{IV}) \text{ phosphate} \\ \text{S}_1 \text{S}_2 \text{S}_3 \end{array}$	$\begin{array}{c} \text{Tin(IV) molybdate} \\ \text{S}_1 \text{S}_2 \text{S}_3 \end{array}$	Tin(IV) tungstate $S_1 S_2 S_3$	$\begin{array}{c} \text{Tin}(\text{IV}) \text{ selenite} \\ \text{S}_1 \text{S}_2 \text{S}_3 \end{array}$	Whatman No.1 $S_1 S_2 S_3$
Ag ⁺	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00
Pb ²⁺	0.00 0.05 0.11	0.03 0.14 0.14	0.81 0.02 0.30	0.04 0.04 0.11	0.05 0.02 0.30	0.06 0.90 0.95
Hg_{2}^{2+}	0.68 0.66 0.76	0.03 0.71 0.78	0.80 0.84 0.87	$0.06 \ 0.00 \ 0.00$	0.15 0.90 0.80	0.00 0.72 0.00
Hg ²⁺	0.95 0.65 0.80	0.85 0.75 0.76	0.87 0.76 0.81	$0.82 \ 0.82 \ 0.86$	0.72 0.74 0.75	$0.00 \ 0.00 \ 0.00$
Bi ³⁺	0.50 0.30 0.07		0.90 0.37 0.17	0.77 0.07 0.94	$0.25 \ 0.34 \ 0.32$	0.07 0.95 0.95
Sb ³⁺	N.D. ^a 0.78 N.I		0.04 0.92 0.93	N.D. N.D. N.D.	N.D. N.D. N.D.	N.D. 0.00 0.00
Pd ²⁺	0.91 0.75 0.82		0.84 0.87 0.92	0.82 0.86 0.87	0.87 0.85 0.90	0.90 0.90 0.95
Pd ⁴⁺	0.77 0.81 0.80		0.83 0.87 0.94	0.86 0.95 0.81	0.82 0.85 0.85	0.84 0.04 0.00
T1 ⁺	0.54 0.72 0.52		0.73 0.54 0.56	0.04 0.17 0.06	0.74 0.74 0.72	0.91 0.82 0.90
Cd^{2+}	0.94 0.86 0.57		0.87 0.90 0.84	0.94 0.91 0.96	0.85 0.85 0.90	0.96 0.95 0.97
Fe^{2+}	0.77 0.94 0.44		0.83 0.93 0.86	0.68 0.82 0.72	0.98 0.85 0.77	0.00 0.94 0.96
Fe ³⁺	0.75 0.06 0.13		0.83 0.92 0.77	0.70 0.12 0.10	0.98 0.74 0.61	1.00 0.92 0.98
UO_2^{2+}	0.84 0.29 0.15		0.92 0.90 0.81	0.73 0.46 0.24	0.95 0.45 0.32	1.00 0.95 0.98
VO^{2+} Ir ³⁺	0.80 0.89 0.84		0.90 0.83 0.90	0.91 0.82 0.89	0.95 0.92 0.93	1.00 0.95 0.98
Ir^{3+} Zn ²⁺	0.91 0.96 0.98		0.75 0.93 0.95	0.69 0.95 0.86	0.95 0.95 0.92	1.00 0.98 0.98
Zn^{2+} Mn ²⁺	0.86 0.81 0.69		0.80 0.90 0.86	0.70 0.95 0.87	0.97 0.95 0.93	1.00 0.98 0.98
Mn ² Cr ³⁺	0.72 0.78 0.98 0.90 0.94 0.66		0.85 0.88 0.75 0.77 0.91 0.85	0.91 0.92 0.93 0.80 0.97 0.89	0.95 0.95 0.92 0.97 0.90 0.92	1.00 0.98 0.98 1.00 0.98 0.98
La ³⁺	0.90 0.94 0.00		0.84 0.84 0.92	0.80 0.97 0.89	0.97 0.90 0.92	0.97 0.95 0.97
Y^{3+}	0.86 0.71 0.95		0.75 0.95 0.68	0.95 0.80 0.20	0.97 0.95 0.92	0.97 0.95 0.97
Pr ³⁺	0.95 0.88 0.70		0.82 0.85 0.89	0.93 0.50 0.19	0.10 0.64 0.87	0.00 0.96 0.97
Nb ⁵⁺	0.88 0.98 0.87		0.80 0.92 0.83	0.95 0.81 0.91	0.92 0.85 0.85	0.97 0.95 0.95
Ce ³⁺	0.95 0.50 0.92		0.86 0.93 0.80	0.91 0.25 0.09	0.95 0.92 0.94	0.00 0.95 0.95
Ce ⁴⁺	0.84 0.45 0.93		0.81 0.63 0.85	0.95 0.28 0.24	0.00 N.D. N.D.	0.00 0.95 0.95
Zr ⁴⁺	0.92 0.96 0.79		0.54 0.90 0.82	0.97 0.75 0.10	0.45 N.D. N.D.	0.00 0.94 0.95
Rh ³⁺	0.95 N.D. 0.93		0.86 0.92 0.92	0.87 0.88 0.83	0.90 0.87 0.97	0.97 0.95 0.97
Ta ⁵⁺	0.92 0.83 0.87		0.75 0.94 0.86	0.95 0.83 0.86	0.98 0.92 0.92	0.97 0.95 0.95
Cu ²⁺	0.95 0.69 0.77		0.76 0.87 0.95	0.02 0.70 0.87	0.70 0.85 0.83	0.05 0.95 0.98
Gd ³⁺	N.D. N.D. N.I	N.D. 0.15 0.15	0.30 0.83 0.77	0.00 0.39 0.12	0.10 0.85 0.79	0.97 0.96 0.95
In ³⁺	0.92 0.94 0.95	0.87 0.07 0.09	0.86 0.92 0.92	0.87 0.80 0.86	0.75 0.85 0.85	0.97 0.95 0.95
Ru ³⁺	0.88 0.87 0.87	0.90 0.80 0.72	0.89 0.76 0.88	0.79 0.91 0.81	0.95 0.95 0.95	0.97 0.95 0.97
Th ⁴⁺	0.94 0.80 0.84	0.17 T 0.20	0.11 0.74 0.58	0.10 0.27 0.18	0.60 0.75 0.77	0.20 0.95 0.95
Ti ⁴⁺	0.33 0.93 0.27	N.D. 0.75 0.12	N.D. 0.92 0.91	0.88 0.51 0.97	N.D. 0.20 0.20	T 0.02 0.97
Au ³⁺	0.60 0.31 0.63	0.51 0.70 0.61	0.61 0.55 0.61	0.54 0.66 0.70	0.30 0.45 0.70	0.20 0.00 0.50
Pt ⁴⁺	0.98 0.82 0.95	0.87 0.98 0.92	0.00 0.75 0.82	0.73 0.91 0.84	N.D. N.D. 0.88	0.93 0.98 0.95
W ⁶⁺	0.98 0.98 0.98		N.D. 0.87 0.88	N.D. N.D. N.D.	N.D. N.D. N.D.	N.D. 0.98 0.95
M0 ⁶⁺	0.92 0.98 0.95		N.D. N.D. N.D.	0.73 0.81 0.90	N.D. N.D. N.D.	0.05 0.98 0.95
Se ⁴⁺	0.85 0.78 0.80		N.D. 0.32 0.37	0.61 0.13 0.52	N.D. N.D. N.D.	0.93 0.98 0.95
Te ⁴⁺	0.95 0.33 0.81		0.40 0.08 0.06	0.05 0.00 0.05	N.D. N.D. N.D.	0.95 9.90 9.92
Mg ²⁺	0.75 0.80 0.79		0.65 0.83 0.90	0.67 0.78 0.64	0.77 0.85 0.80	0.80 0.93 0.93
Be^{2+}	0.90 0.64 0.23		0.90 0.86 0.90	0.89 0.98 0.91	0.98 0.94 0.93	1.00 0.96 0.97
Al ³⁺	0.97 0.22 0.10		0.91 0.88 0.79	0.95 0.98 0.94	0.94 0.95 0.85	1.00 0.95 0.96
Ga^{3+}	0.94 0.82 0.73		0.92 0.92 0.93	0.92 0.98 0.70	0.98 0.95 0.85	1.00 0.95 0.97
K ⁺	0.92 0.72 0.80		0.79 0.83 0.92	0.75 0.86 0.72	0.95 0.95 0.84	0.95 0.98 0.98
Rb ⁺	0.95 0.93 0.51		0.66 0.90 0.81	0.71 0.75 0.75	0.93 0.95 0.82	0.95 0.98 0.98
Cs^+	0.95 0.92 0.73		0.69 0.90 0.92	0.42 0.50 0.40	0.95 0.95 0.84	0.95 0.98 0.98
Ba^{2+} Sr ²⁺	0.44 0.43 0.80		0.44 N.D. N.D.	0.44 0.65 0.26	0.83 0.94 0.83 0.93 0.90 0.90	1.00 0.96 0.95 1.00 0.95 0.95
Sr ² + Ni ² +	0.95 0.92 0.93		N.D. N.D. N.D.	0.89 0.91 0.98	0.78 0.75 0.72	1.00 0.95 0.95
$N1^{2+}$ $C0^{2+}$	0.98 0.94 0.84 0.98 0.92 0.73		0.91 0.97 N.D. 0.83 0.82 0.89	0.83 0.82 0.66 0.79 0.85 0.87	0.78 0.75 0.72	1.00 0.95 0.95
Ca^{2+}			0.83 0.82 0.89	0.88 0.90 0.80	N.D. N.D. N.D.	1.00 0.95 0.97
Ca~	0.92 0.95 0.89	0.92 0.92 0.90	0.64 0.91 0.90	0.08 0.90 0.80	N.D. N.D. N.D.	1.00 0.95 0.95

^a N.D. = Not detected. ^b T = Tailing.

Solvent	Cations + solvent	vent	Cations + so arsenate + solvent	Cations + sodium arsenate + solvent	Cations molybd solvent	Cations + sodium molybdate + solvent	Cations + sodium phosphate + solvent	lium	Cations + soo tungstate + solvent	+ sodium	Cations + sodium Cations + sodium tungstate + selenite + solvent solvent	sodium
	P	۸P ^b		dN	Р	NP	P	ЧN	Р	ďN	Ь	dN
0.5 M citríc acid	None	$Hg^{2+}, Ti^{4+}, Ag^{+}, Pb^{2+} None Pb^{2+} Ag^{+}, Pd^{4+}, Ag^{+}, Sb^{3+}$	Ag ⁺ ,Pb ²	⁺ None	Pb ²⁺	Ag+,	NIL	Ag ⁺ ,Mo ⁶⁺	pb^{2+}	${\mathop{\rm Ag}_{+}^{+}}^{\rm Ag}, {\mathop{\rm Hg}_{+}^{+}}^{\rm Hg2},$	Ag ⁺	None
0.5 M tartaric acid	None	${\rm Ag}^{+}_{2},{\rm Sb}^{3+}_{2},{\rm Hg}^{2}_{2},{\rm Hg}^{2+}_{2}$	Ag^+	None	None	None None Ag ⁺ , Te ⁴⁺	Zr^{4+}	Ag ⁺ ,Mo ⁶⁺	None	${}^{\rm Je}_{\rm Ag^+}$ ${}^{\rm Hg^2_2}$	Ag^+	None
0.5 M oxalic acid	$\begin{array}{c} Cu^{2+},Hg_{2}^{2+},\\ Hg^{2+},Pb^{2+},\\ Ce^{3+},Pr^{3},\\ Ce^{4+},Th^{4+} \end{array}$	$Ag^+, Fe^{2+}, Ag^+, Pb^{2+}$ None Zr^{4+}	Ag^+, Pb^2	⁺ None	None	None Ag^+, Sb^{3+} , Pt^{4+}	$Ag^{+}, Pb^{2+}, Zr^{4+}, W^{6+}$	Mo ⁶⁺	Pb ²⁺ , Cu ²⁺ ,Tl ⁺	+ Ag+	Ag ⁺ ,Ce ⁴⁺ None	None

TABLE III

^{*a*} P = Cations that precipitate.^{*b*} NP = Cations that do not precipitate.

RESULTS AND DISCUSSION

The anion:Sn ratios of the exchangers deposited on paper and the ion-exchange capacity of the treated papers are given in Table I. Chromatography was performed on tin (IV) arsenate-, tin (IV) molybdate-, tin (IV) phosphate-, tin (IV) tungstateand tin (IV) selenite-impregnated papers in the following solvents: S_1 , 0.5 *M* oxalic acid; S_2 , 0.5 *M* citric acid; and S_3 , 0.5 *M* tartaric acid. The same solvents were used for Whatman No.1 papers for comparison.

In many instances it was found possible to separate one cation from numerous metal ions. The R_F values are summarized in Table II. Some useful separations were also achieved on plain papers.

Table I summarizes the composition studies on impregnated papers. A plot of anion:Sn ratio versus pK_a of anionic acids for all the impregnated papers reveals that the concentration of the anion in the exchanger deposited varies directly with the pK_a of the corresponding anionic acids (Fig. 1).

In order to study the effect of impregnation, the value of R_i (= R_F on Whatman No.1 papers – R_F on impregnated papers) for all cations were calculated. For the cations having $R_i > 0.4$, the following conclusions can be drawn.

(1) Tin(IV) arsenate-impregnated papers in 0.5 M tartaric acid media are selective for Rb⁺, Cd²⁺, Pb²⁺, Bi³⁺, UO₂²⁺, Fe²⁺, Fe³⁺, Be²⁺ and Al³⁺ owing to the higher adsorption on these papers.

(2) With tin(IV) phosphate-impregnated papers,

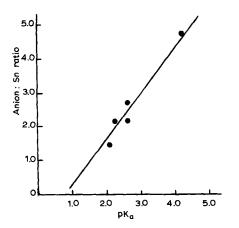


Fig. 1. Plot of anion: Sn ratio versus pK_a for anionic acids.

Be²⁺, Y³⁺, Rh³⁺ and Ti⁴⁺ in 0.5 *M* tartaric acid, Ba²⁺, Sr²⁺, Ce³⁺, Pr³⁺ and Ga³⁺ in 0.5 *M* oxalic acid and In³⁺, Zr⁴⁺ and Th⁴⁺ in 0.5 *M* citric acid media are selectively adsorbed.

(3) On tin(IV) tungstate-impregnated papers, Cs^+ , Pb^{2+} , Tl^+ , La^{3+} and Zr^{4+} in 0.5 *M* tartaric acid, Se^{4+} and Te^{4+} in 0.5 *M* citric acid and Gd^{3+} in 0.5 *M* oxalic acid media show a high degree of adsorption.

(4) In 0.5 *M* oxalic acid media, tin(IV) seleniteimpregnated papers are highly selective for Pr^{3+} whereas tin(IV) molybdate-impregnated papers selectively adsorb Pt^{4+} .

The zero R_F for a number of cations on impregnated papers may be due to precipitation, ion exchange and strong adsorption owing to the high charge. On mixing solutions of the cations with oxalic acid, it was found that with Cu^{2+} , Hg_2^{2+} , Hg_2^{2+} , Pb^{2+} , Pr^{3+} , Ce^{3+} , Ce^{4+} and Th^{4+} a precipitate was obtained. In such instances, the zero R_F on plain papers is therefore due to the precipitation mechanism. On mixing with citric and tartaric acid, no ion was precipitated. The zero R_F on plain papers in these solvents may be due to interaction with the paper matrix, as in the case of Ag^+ and Sb^{3+} . For Zr^{4+} , Ti^{4+} and Pd^{4+} , the zero R_F may be due to the strong adsorption owing to the high charge. In order to simulate conditions on impregnated papers, the sodium salt of the anion was added to the cation solution followed by the solvent. A number of ions precipitated under these conditions (see Table III). In these instances also the precipitation mechanism holds good.

The chromatographic behaviour of metal ions on ion-exchange columns and on impregnated papers using the same exchangers is interesting. The R_F values of metal ions are related to their distribution coefficients on tin(IV)-based exchangers. For higher distribution coefficients, we observe lower R_F values. This behaviour is expected because when the K_d is higher, the ion is more strongly held by the ion exchanger and is less easily allowed to move further, giving a lower R_F value. This trend was confirmed by determining the R_F values of some common metal ions on all the impregnated papers in demineralized water. The K_d values for these ions are given for comparison in Table IV, which shows that for most of the cations studied, the sequence of K_d values is the same as that predicted from R_F values. If

TABLE IV

COMPARISON OF K_d VALUES AND R_F VALUES OF SOME IONS ON TIN(IV)-BASED EXCHANGERS

Demineralized water as medium.

Exchanger	$K_{\rm d}$ [12–16,19]	R _F
Tin(IV)	$Sr^{2+} > Ca^{2+} > Ba^{2+} > Mg^{2+}$	$Mg^{2+} > Ba^{2+} = Sr^{2+} > Ca^{2+}$
arsenate	$Zn^{2+} > Cd^{2+}$	$Hg^{2+} > Cd^{2+} > Zn^{2+}$
	$\ln^{3+} > Y^{3+} > Al^{3+} > La^{3+} > Ga^{3+}$	$La^{3+} > Y^{3+} > ln^{3+} > Al^{3+} > Ga^{3+}$
	$Ni^{2+} > Fe^{3+} > Co^{2+} > Pb^{2+} > Cu^{2+} > Mn^{2+}$	$Cu^{2+} > Co^{2+} > Ni^{2+} > Pb^{2+}Fe^{3+} > Mn^{2+}$
	$Th^{4+} > Zr^{4+}$	$Th^{4+} > Zr^{4+}$
Tin(IV)	$Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$	$Mg^{2+} > Ca^{2+} > Sr^{2+} > Ba^{2+}$
molybdate	$Pb^{2+} > Cu^{2+} > Zn^{2+} > Cd^{2+} > Ni^{2+} > Co^{2+}$	$Co^{2+} > Ni^{2+} > Cd^{2+} > Cu^{2+} > Zn^{2+} > Pb^{2+}$
	$Y^{3+} > Al^{3+}$	$A^{3+} > Y^{3+}$
Tin(IV)	$Ba^{2+} > Sr^{2+} > Mg^{2+}$	$Mg^{2+} > Sr^{2+} > Ba^{2+}$
tungstate	$Pb^{2+} > Cd^{2+} > Zn^{2+}$	$Zn^{2+} > Cd^{2+} > Pb^{2+}$
e	$Co^{2+} > Ni^{2+} > Cu^{2+}$	$Cu^{2+} > Ni^{2+} > Co^{2+}$
Tin(IV)	$Cu^{2+} > Ca^{2+} > Sr^{2+} > Zn^{2+} > Co^{2+}$	$Cu^{2+} > Co^{2+} > Zn^{2+} > Sr^{2+} > Ca^{2+}$
phosphate		
Tin(IV)	$Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$	$Mg^{2+} > Ca^{2+} > Ba^{2+} > Sr^{2+}$
selenite	$Cd^{2+} > Hg^{2+} > Zn^{2+}$	$Zn^{2+} > Cd^{2+} > Hg^{2+}$
	$La^{3+} > Y^{3+} > In^{3+} > Ga^{3+} > Al^{3+}$	$A ^{3+} > In^{3+} > Ga^{3+} > Y^{3+} > La^{3+}$
	$Cu^{2+} > Ni^{2+} > Pb^{2+} > Co^{2+} > Fe^{3+}$	$Co^{2+} > Cu^{2+} > Ni^{2+} > Fe^{3+} > Pb^{2+}$
	$Zr^{4+} > Th^{4+}$	$Th^{4+} > Zr^{4+}$

it is considered that the elution sequence can be predicted from K_d values, it follows that the R_F values are not reliable for such prediction for the following reasons: in paper chromatography the solvent ascent is too fast to achieve equilibrium; some of the ions definitely interact in a different manner with the paper than with the ion exchanger; and the material obtained by precipitation from solution and that deposited on paper have different compositions. As the K_d values depend on the composition of the material, they are found to be different.

Owing to above facts, the Alberti and Torracca's view [20] that the elution sequence can be predicted from R_F values is not very convincing. At best the R_F values are a rough guide especially when they differ from one another considerably.

On the basis of R_F values, a large number of binary and ternary separations are possible. Some of the important ones actually achieved are as follows:

(a) $Cr^{3+}-Mo^{6+}$ or W^{6+} , Ag^+ , Hg_2^{2+} , Pb^{2+} , Cu^{2+} , Ba^{2+} or Sr^{2+} [on tin(IV) phosphate paper in 0.5 *M* oxalic acid];

(b) $Ba^{2+}-Sr^{2+}$ or Ca^{2+} , Be^{2+} , Al^{3+} , Hg^{2+} , Bi^{3+} , Pd^{2+} , Pd^{4+} , Cd^{2+} , Fe^{2+} , Mn^{2+} , Cr^{3+} or Cu^{2+} [on tin(IV) tungstate paper in 0.5 *M* tartaric acid];

(c) $Zr^{4+}-Th^{4+}$ or Gd^{3+} or Te^{4+} [on tin(IV) tungstate paper in 0.5 *M* oxalic acid];

(d) $In^{3+}-Al^{3+}$ or Fe^{3+} , UO_2^{2+} , Ti^{4+} or Be^{2+} [on tin(IV) arsenate paper in 0.5 *M* tartaric acid];

(e) $Pb^{2+}-UO_2^{2+}$ or Pd^{4+} , Pt^{4+} , Tl^+ , Cd^{2+} , Fe^{3+} , VO^{2+} , Zn^{2+} , Mn^{2+} , Cr^{3+} or Mg^{2+} [on Whatman No.1 paper in 0.5 *M* oxalic acid];

(f) $Pb^{2+}-Hg^{2+}-Bi^{3+}$ and $Ag^{+}-Au^{3+}-Pt^{4+}$ [on tin(IV) arsenate paper in 0.5 *M* oxalic acid].

The main advantage of this work lies in the fact that Cr^{3+} was quantitatively separated from binary mixtures containing larger amounts of other metal ions such as Mo^{6+} , W^{6+} , Ag^+ , Pb^{2+} , Cu^{2+} , Hg_2^{2+} , Ba^{2+} and Sr^{2+} (Table V). In order to explore the possible application of the method in a wider field, two synthetic mixtures were prepared by taking Cr^{3+} together with all these metal ions. Cr^{3+} was successfully separated from these mixtures as indicated in Table V. The complex-forming acids were found to be very useful solvents for metal ion separations. Even on Whatman No.1 paper, such important separations such as $Cr^{3+}-Mo^{6+}$ (in 0.5 *M* oxalic acid), $Hg_2^{2+}-Hg^{2+}$ (in 0.5 *M* citric acid) and $Ti^{4+}-Zr^{4+}$ or La^{3+} (in 0.5 *M* citric acid) were achieved.

TABLE	V
-------	---

QUANTITATIVE SEPARATION OF Cr3+ IN BINARY AND SYNTHETIC MIXTURES

Sample No.	Amount of Cr ³⁺ loaded (µg)	Amount of other metal ion loaded (μg)	Amount of Cr^{3+} found (μg)	Error (%)
1	5.00	Ag ⁺ (340)	5.00	0.00
2	5.00	$Sr^{2+}(423)$	5.40	-8.00
3	5.00	Pb ²⁺ (662)	5.00	0.00
4	5.00	$Ba^{2+}(522)$	5.30	-6.00
5	5.00	Hg_{2}^{2+} (560)	5.35	-7.00
6	5.00	$Cu^{2+}(500)$	5.40	- 8.00
7	5.00	Mo ⁶⁺ (412)	5.00	0.00
8	5.00	W ⁶⁺ (660)	5.00	0.00
9	5.00	Mixture	5.60	-12.00
10	5.00	Mixture	5.50	- 10.00

ACKNOWLEDGEMENT

The authors are grateful to the University Grants Commission, New Delhi (India), for financial assistance.

REFERENCES

- 1 M. Qureshi and S. Z. Qureshi, J. Chromatogr., 22 (1966) 198.
- 2 M. Qureshi, K. N. Mathur and A. H. Israili, *Talanta*, 16 (1969) 503.
- 3 M. Qureshi, I. Akhtar and K. N. Mathur, *Anal. Chem.*, 39 (1967) 1766.
- 4 M. Qureshi and K. N. Mathur, Anal. Chim. Acta, 41 (1963) 560.
- 5 M. Qureshi and S. D. Sharma, Anal. Chem., 45 (1973) 1283.
- 6 M. Qureshi and S. D. Sharma, Talanta, 22 (1975) 129.
- 7 M. Qureshi and S. D. Sharma, Chromatographia, 11 (1978) 153.

- 8 M. Qureshi, K. G. Varshney, M. P. Gupta and S. P. Gupta, Chromatographia, 10 (1977) 29.
- 9 M. Qureshi and J. P. Rawat, Sep. Sci., 7 (1972) 297.
- 10 M. Qureshi, K. G. Varshney and R. P. S. Rajpoot, Anal. Chem., 47 (1975) 1520.
- 11 S. K. Dabral, K. P. S. Muktawat and J. P. Rawat, Indian J. Chem., Sect. A, 27 (1988) 745.
- 12 M. Qureshi, R. Kumar and H. S. Rathore, J. Chem. Soc. A, 2 (1970) 272.
- 13 M. Qureshi and J. P. Rawat, J. Inorg. Nucl. Chem., 30 (1968) 305.
- 14 Y. Inoue, J. Inorg. Nucl. Chem., 26 (1964) 2241.
- 15 M. Qureshi and K. G. Varshney, J. Inorg. Nucl. Chem., 30 (1968) 3081.
- 16 M. Qureshi and S. A. Nabi, Talanta, 19 (1972) 1033.
- 17 B. E. Saltzman, Anal. Chem., 24 (1952) 1016.
- 18 E. B. Sandell, Colorimetric Determination of Traces of Metals, Interscience, New York, 3rd ed., 1959, p. 397.
- 19 Y. Inoue, Bull. Chem. Soc. Jpn., 36 (1963) 1316.
- 20 G. Alberti and E. Torracca, J. Inorg. Nucl. Chem., 30 (1968) 3075.